123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- """
- Performs a single pass over an input FASTA/FOFN, and collects
- all ZMWs. For each ZMW it calculates the expected molecular size by picking
- the internal median subread length.
- The script outputs a JSON file with a whitelist of ZMWs selected by a given
- strategy (random, longest, etc.) and desired coverage of a genome.
- Author: Ivan Sovic
- """
- from falcon_kit.mains.fasta_filter import ZMWTuple
- from falcon_kit.util.system import set_random_seed
- import falcon_kit.FastaReader as FastaReader
- import falcon_kit.mains.fasta_filter as fasta_filter
- import falcon_kit.io as io
- import os
- import sys
- import argparse
- import logging
- import contextlib
- import itertools
- import random
- import json
- import copy
- LOG = logging.getLogger()
- STRATEGY_RANDOM = 'random'
- STRATEGY_LONGEST = 'longest'
- def strategy_func_random(zmws):
- """
- >>> random.seed(12345); strategy_func_random([])
- []
- >>> random.seed(12345); strategy_func_random([('synthetic/1', 9)])
- [('synthetic/1', 9)]
- >>> random.seed(12345); strategy_func_random([('synthetic/1', 9), ('synthetic/2', 21), ('synthetic/3', 9), ('synthetic/4', 15), ('synthetic/5', 20)])
- [('synthetic/5', 20), ('synthetic/3', 9), ('synthetic/2', 21), ('synthetic/1', 9), ('synthetic/4', 15)]
- """
- ret = copy.deepcopy(zmws)
- random.shuffle(ret)
- return ret
- def strategy_func_longest(zmws):
- """
- >>> strategy_func_longest([])
- []
- >>> strategy_func_longest([('synthetic/1', 9)])
- [('synthetic/1', 9)]
- >>> strategy_func_longest([('synthetic/1', 9), ('synthetic/2', 21), ('synthetic/3', 9), ('synthetic/4', 15), ('synthetic/5', 20)])
- [('synthetic/2', 21), ('synthetic/5', 20), ('synthetic/4', 15), ('synthetic/1', 9), ('synthetic/3', 9)]
- """
- return sorted(zmws, key = lambda x: x[1], reverse = True)
- STRATEGY_TYPE_TO_FUNC = { STRATEGY_RANDOM: strategy_func_random,
- STRATEGY_LONGEST: strategy_func_longest
- }
- def get_strategy_func(strategy_type):
- """
- >>> get_strategy_func(STRATEGY_RANDOM) == strategy_func_random
- True
- >>> get_strategy_func(STRATEGY_LONGEST) == strategy_func_longest
- True
- >>> try:
- ... get_strategy_func('nonexistent_strategy')
- ... print('False')
- ... except:
- ... print('True')
- True
- """
- assert strategy_type in STRATEGY_TYPE_TO_FUNC, 'Unknown strategy type: "{}"'.format(str(strategy_type))
- return STRATEGY_TYPE_TO_FUNC[strategy_type]
- def select_zmws(zmws, min_requested_bases):
- """
- >>> select_zmws([], 0)
- ([], 0)
- >>> select_zmws([], 10)
- ([], 0)
- >>> select_zmws([('zmw/1', 1), ('zmw/2', 2), ('zmw/3', 5), ('zmw/4', 7), ('zmw/5', 10), ('zmw/6', 15)], 10)
- (['zmw/1', 'zmw/2', 'zmw/3', 'zmw/4'], 15)
- >>> select_zmws([('zmw/1', 1), ('zmw/2', 2), ('zmw/3', 5), ('zmw/4', 7), ('zmw/5', 10), ('zmw/6', 15)], 20)
- (['zmw/1', 'zmw/2', 'zmw/3', 'zmw/4', 'zmw/5'], 25)
- >>> select_zmws([('zmw/1', 1), ('zmw/1', 2), ('zmw/1', 5), ('zmw/1', 7), ('zmw/1', 10), ('zmw/1', 15)], 20)
- (['zmw/1', 'zmw/1', 'zmw/1', 'zmw/1', 'zmw/1'], 25)
- """
- # Select the first N ZMWs which sum up to the desired coverage.
- num_bases = 0
- subsampled_zmws = []
- for zmw_name, seq_len in zmws:
- num_bases += seq_len
- subsampled_zmws.append(zmw_name)
- if num_bases >= min_requested_bases:
- break
- return subsampled_zmws, num_bases
- def calc_stats(total_unique_molecular_bases, total_bases, output_bases, genome_size, coverage):
- """
- >>> calc_stats(0, 0, 0, 0, 0) == \
- {'genome_size': 0, 'coverage': 0, 'total_bases': 0, 'total_unique_molecular_bases': 0, \
- 'output_bases': 0, 'unique_molecular_avg_cov': 0.0, 'output_avg_cov': 0.0, 'total_avg_cov': 0.0}
- True
- >>> calc_stats(10000, 100000, 2000, 1000, 2) == \
- {'genome_size': 1000, 'coverage': 2, 'total_bases': 100000, 'total_unique_molecular_bases': 10000, \
- 'output_bases': 2000, 'unique_molecular_avg_cov': 10.0, 'output_avg_cov': 2.0, 'total_avg_cov': 100.0}
- True
- """
- unique_molecular_avg_cov = 0.0 if genome_size == 0 else float(total_unique_molecular_bases) / float(genome_size)
- total_avg_cov = 0.0 if genome_size == 0 else float(total_bases) / float(genome_size)
- output_avg_cov = 0.0 if genome_size == 0 else float(output_bases) / float(genome_size)
- ret = {}
- ret['genome_size'] = genome_size
- ret['coverage'] = coverage
- ret['total_bases'] = total_bases
- ret['total_unique_molecular_bases'] = total_unique_molecular_bases
- ret['output_bases'] = output_bases
- ret['total_avg_cov'] = total_avg_cov
- ret['unique_molecular_avg_cov'] = unique_molecular_avg_cov
- ret['output_avg_cov'] = output_avg_cov
- return ret
- def collect_zmws(yield_zmwtuple_func):
- """
- >>> collect_zmws([])
- ([], 0, 0)
- >>> collect_zmws([\
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=0, subread_end=1000, seq_len=1000, subread_record=None, subread_header='test/1/0_1000', subread_id=0), \
- ])
- ([('test/1', 1000)], 1000, 1000)
- >>> collect_zmws([\
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=1000, subread_record=None, subread_header='test/1/0_1000', subread_id=0), \
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=2000, subread_record=None, subread_header='test/1/1000_3000', subread_id=0), \
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=3000, subread_record=None, subread_header='test/1/3000_6000', subread_id=0), \
- ])
- ([('test/1', 2000)], 2000, 6000)
- >>> collect_zmws([\
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=1000, subread_record=None, subread_header='test/1/0_1000', subread_id=0), \
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=2000, subread_record=None, subread_header='test/1/1000_3000', subread_id=1), \
- ZMWTuple(movie_name='test' , zmw_id='1', subread_start=123, subread_end=456, seq_len=3000, subread_record=None, subread_header='test/1/3000_6000', subread_id=2), \
- ZMWTuple(movie_name='test' , zmw_id='2', subread_start=123, subread_end=456, seq_len=10000, subread_record=None, subread_header='header2', subread_id=3), \
- ])
- ([('test/1', 2000), ('test/2', 10000)], 12000, 16000)
- """
- zmws = []
- unique_molecular_size = 0
- total_size = 0
- for zmw_id, zmw_subreads in itertools.groupby(yield_zmwtuple_func, lambda x: x.zmw_id):
- zmw_subreads_list = list(zmw_subreads)
- zrec = fasta_filter.internal_median_zmw_subread(zmw_subreads_list)
- movie_zmw = zrec.movie_name + '/' + zrec.zmw_id
- unique_molecular_size += zrec.seq_len
- total_size += sum([zmw.seq_len for zmw in zmw_subreads_list])
- zmws.append((movie_zmw, zrec.seq_len))
- return zmws, unique_molecular_size, total_size
- def yield_record(input_files):
- for input_fn in input_files:
- with open(input_fn, 'r') as fp_in:
- fasta_records = FastaReader.yield_fasta_record(fp_in, log=LOG.info)
- for record in fasta_records:
- yield record
- def run(yield_zmw_tuple_func, coverage, genome_size, strategy_func):
- zmws, total_unique_molecular_bases, total_bases = collect_zmws(yield_zmw_tuple_func)
- zmws = strategy_func(zmws)
- subsampled_zmws, output_bases = select_zmws(zmws, coverage * genome_size)
- stats_dict = calc_stats(total_unique_molecular_bases, total_bases, output_bases, genome_size, coverage)
- return subsampled_zmws, zmws, stats_dict
- def parse_args(argv):
- parser = argparse.ArgumentParser(description="Produces a list of ZMW where the median unique molecular "\
- "coverage sums up to the desired coverage of the given genome size.s",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--strategy', type=str, default='random',
- help='Subsampling strategy: random, longest')
- parser.add_argument('--coverage', type=float, default=60,
- help='Desired coverage for subsampling.')
- parser.add_argument('--genome-size', type=float, default=0,
- help='Genome size estimate of the input dataset.', required=True)
- parser.add_argument('--random-seed', type=int, default=12345,
- help='Seed value used for the random generator.', required=False)
- parser.add_argument('input_fn', type=str, default='input.fofn',
- help='Input FASTA files or a FOFN. (Streaming is not allowed).')
- parser.add_argument('out_prefix', type=str, default='input.cov',
- help='Prefix of the output files to generate.')
- args = parser.parse_args(argv[1:])
- return args
- def main(argv=sys.argv):
- args = parse_args(argv)
- logging.basicConfig(level=logging.INFO)
- strategy_func = get_strategy_func(args.strategy)
- LOG.info('Using subsampling strategy: "{strategy}"'.format(strategy=args.strategy))
- set_random_seed(args.random_seed)
- input_files = list(io.yield_abspath_from_fofn(args.input_fn))
- zmws_whitelist, zmws_all, stats_dict = run(
- fasta_filter.yield_zmwtuple(yield_record(input_files), None, False), args.coverage, args.genome_size, strategy_func)
- out_zmw_whitelist = args.out_prefix + '.whitelist.json'
- out_all_zmws = args.out_prefix + '.all.json'
- out_zmw_stats = args.out_prefix + '.stats.json'
- with open(out_zmw_whitelist, 'w') as fp_out_whitelist, \
- open(out_all_zmws, 'w') as fp_out_all_zmws, \
- open(out_zmw_stats, 'w') as fp_out_stats:
- # Write out the whitelist.
- fp_out_whitelist.write(json.dumps(zmws_whitelist))
- # Write the entire list of ZMWs and lengths, might be very informative.
- fp_out_all_zmws.write(json.dumps(zmws_all))
- # Write out the stats.
- fp_out_stats.write(json.dumps(stats_dict))
- if __name__ == "__main__": # pragma: no cover
- main(sys.argv) # pragma: no cover
|